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AIIItrad-When the displacements are independent of the xJ-coordinate.the eiaenvaJues and eiaenvectors of
the anisotropic elasticity constants depend on the orientation of the (x .. Xl) axes. It is shown that the
components of the ei,envectors (which are complex values) transform accordina to the law of transformation
for tensors of order one. The transformation of the ei,envaJlJel is more complicated. The elrects of chanae of
the reference coordinates on the form of aeneral solution are discussed. Also discussed is the form of aeneraJ
solution when the ei,envalue p is a multiple rool. Finally. we show that as the anile of rotation. of the
coordinate axes varies from 0 to 2... each p traverses a circle in the complex plane which is orthoaonal to the
unit circle with center at the oriain. AaraphicaJ solution of the eiaenvaJue p for a liven. is presented. Some
funclions of p which are invariant 10 the rotation of lhe coordinale axes are obtained.

I. INTRODUCTION

The general solution to the class of problems in anisotropic elastic materials in which the
displacement and hence the stress is independent of the x)-eoordinate in a rectangular
coordinate system was first obtained by Eshelby tt al.[I]. They applied their results to a straight
dislocation acted on by a concentrated body force. This was extended to a line singularity by
Stroh [2] who subsequently developed a powerful six-dimensional theory of dislocations and
surface waves in anisotropic solids[3]. Stroh's theory has been further developed by Barnett
and his co-workers in a series of papers (see[4-6], e.g.). An excellent review article on the
theory of surface waves in anisotropic elastic materials was given recently by Chadwick and
Smith [7].

Basic to the analyses of anisotropic materials is the eigenvalues p and the associated
eigenvectors g and h, called the Stroh eigenvectors of the elasticity constants. Since the
elasticity constants depend on the choice of the reference coordinates, so do the eigenvalues
and the Stroh eigenvectors. After presenting the basic equations necessary for the paper in
Section 2, we study in Section 3 how g, hand p vary as one rotates the coordinate system about
the .I)-axis. We find that g and h transform according to the law of transformation for tensors of
order one. This result may appear to be in contradiction with that of Barnett and Lothe [5] and
we explain the differences in the interpretation of the results in Section 4. In Section 5 we
investigate how the form of general solution changes due to the change of the reference
coordinates. This is relevant to the analyses of stress singularities at the vertex of an anisotropic
composite wedge [8] because the order of singularities should be independent of the choice of
the reference coordinates. The form of the general solution becomes incomplete when there is
at least one multiple eigenvalue. We present in Section 6 a general solution associated with a
multiple eigenvalue. Finally, we investigate geometrically in Section 7 how each of the eigen­
values p varies as the angle iP of the rotation of the coordinate axes varies from 0 to 21T. We
show that the locus of p in the complex plane is a circle as tP varies from 0 to 21T. The circle
intersects orthogonally another circle of unit radius with center at the origin. Agraphical solution
of p for a given iP is presented. We also present some functions of p which are invariant to the
rotation of the coordinate axes.

2. BASIC EQUATIONS

We use rectangular cartesian coordinates (Xl, X2, Xl) and adopt the convention of implied
summation over repeated subscript indices from I to 3. The constitutive and equilibrium
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equations are

T. C. T. T1NG

O';jj =0

(I)

(2)

where Ui and O'ij are the displacement and stress, respectively, and a comma stands for partial
derivative with respect to the space coordinates. C;jld are the material constants with the
symmetry properties

CIj/d = CIdij = Cjill

We assume that Ui and O'ij are independent of X3. Equation (2) then reduces to

It can be shown that[7] the vector s defined by

where at and a2 are arbitrary real constants, generates the stress components

O'iJ = - Si,2. 0'12 = S;.I

(3)

(4)

(5)

(6)

and hence eqn (4) is automatically satisfied. Elimination of 0'1/ between eqns (I) and (6) yields
the relations

QilUlt.t +Riltul.2 = -Si,2)

RliUl.1 + Ti1Ul.2 = Sj.1

where

Equations (7) can be written in matrix notations as

[QT 0] [0.1]+[R I] [u.2] = 0
R -I 5,1 T 0 5,2

where the superscript T stands for the transpose.
Introducing the new variable Z by

Z=XI+pX2

where p is a constant, the general solution for u and s may be written as

Uj = gJ(Z) + ...

Sj =hJ(Z) +...

(7)

(8)

(9)

(10)

(lla)

(lIb)

where f is an arbitrary function and g and b are the eigenvectors. Since there are six
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eigenvalues p and six associated eigenvectors g and h, the dots in eqns (II) stand for the
remaining five arbitrary functions. For simplicity only the first term is written explicitly in eqn
(II) to avoid introducing an additional subscript for the eigenvalues. g, hand P are determined
by substituting eqns (11) into (9):

[ ~+PR PI] [g]=o
R +pT -I h

or

ph = -(Q +pR)g

h = (RT + pT)g.

Elimination of h between the two equations yields

08=0,

where

(12)

(l3a)

(l3b)

(14)

(15)

For the nontrivial solution of g, the determinant of D must vanish. This provides a sextic
equation for p. If the strain energy is positive definite, it can be shown that p cannot be
real [I , 3,9]. Therefore, we have three pairs of complex conjugate roots for p. The eigenvectors g
and h are called the Stroh eigenvectors and are obtained from eqns (14) and (l3b).

Before we go to the next section, we write Uij in terms of the arbitrary function feZ) using
eqns (6) and (lIb):

d/(Z)
Uil = -phi (iZ- ...

(l6a)
_ d/(Z)

Un - hj dZ +...

The only stress component missing in eqn (l6a) is UJJ which is obtained from eqns (I) and (lla):

d/(Z)
UJJ = (cml +PCnd gk dZ +... (l6b)

Since the change of (XhX2) axes does not affect Un, we will ignore UJJ in the rest of the paper.

3. CHANGE OF REFERENCE COORDINATES

Consider a new reference coordinate xT which is obtained by rotating the Xi coordinates
about the xJ-axis an angle q" Fig. 1. Hence

Let

[
COS q, cSoin~~ O~]._ ax~ _ - sin q, ."

OiJ---
aXj 0

(17)

(18)



142 T. C. T. TlNG

Fig. I. Change of reference coordinates.

Since Cijkf is a tensor of order 4. its components C'1kI in the xT coordinates are related to cfjkl by
the relation

Noticing that

011 =B"~~ +a"sin~ )

02j ::::; - Sjl sm q, +8j2 cos q,

where 8ij is the Kronecker delta. it can be shown from eqns (8), (19) and (20) that

(19)

(20)

R* = C":'lk2 = O{Rcos2 q, - RT sin2 </1 +(T-Q)cos </1 sin cf>} OT (21b)

Rewriting eqn (15) for the Xi* coordinates as

Dolo = Q* +p*(R* +R*T)+ p*ur*

and substituting eqns (21) into (22) yields

D* =(cos q, - p* sin q,)2 ODOT

where p, which is contained in Dabove, has been set to

p =(sin q, + polo cos cf»((cos cf> - p* sin cf».

Solving for polo. we have

polo ::::; (p cos 4> - sin 4»{(P sin 4> +cos q,)

=tan(\II-cf»

(22)

(23)

(24)

(25)

where \II is a complex angle. Both expressions for p* in eqn (25) have been obtained before (9.5}
by dUferent approaches.

The eigenvectors g* and h* in the xT coordinates are obtained by rewriting eqns (14) and
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h* = (R*T +p*T*)g*.
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(26)

(27)

Noticing that (cos tb - p* sin tb) ~ 0 because p* is a complex number, eqn (26) gives, using eqns
(23) and (14), OTg* = Ag where Ais a constant. Upon normalization, we have

g*=Og.

Substitution of eqns (21), (25) and (28a) into eqn (27) and making use of eqns (13) yields

h*=Oh.

(28a)

(28b)

Equations (28a,b) show that the Stroh eigenvectors g and h are frame-indifference vectors
according to the definition of Truesdell and Knoll[IO]. This would have been expected had the
components of g and h been real values. Nevertheless, we may regard vectors g and h as having
fixed directions in the material. Therefore, they should not change their directions with change
of the reference coordinates. The components of g and h, of course, change according to eqns
(28) when the frame of reference changes.

4. COMPARISON WITH THE PUBLISHED RESULTS
Let m and n be unit vectors along the xT - and x! - coordinate axes, respectively, Fig. I.

Then

m= (cos tb, sin tb, 0) I
n = ( - sin tb, cos tb,O)

IIlo = (1,0,0), Do = (0, I,0).

(29)

Instead of assuming u and 5 in the form given in eqns (II), Barnett and Lothe[6] considered a
more general form:

Uj = gJ*(m . x+p*n . x) +...

Sj = hJ*(m . x+p*n . x) +...

(30a)

(3Ob)

Since m, nand p* depend on tb, one might expect that 8; and h; also depend on cP. Barnett and
Lothe obtained the remarkable result that 8j and hi are independent of tb. Noting that the
argument of f* in eqns (30) reduces to Z when tb = 0, this implies that 8/ and h; are identical to
gl and 1&;, respectively. Before we prove the invariance of gl and iii with respect to t/I using the
approaches of this paper, it should be pointed out that Uj and SI in eqns (30) are vector
components referred to the fixed reference frame Xi> not the rotating frame xT. Therefore, gj and
hi should not be regarded as the Stroh eigenvectors in the x, coordinates.

Following[6], we define

Substitution of eqn (30a) into eqn (1) and then into eqn (2) leads to the relation

Dg=O
where

D=(mm) +p*(mn +om) +p.2(nn)

(31)

(32)

(33)
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Using eqns (29) and (31), it can be shown that (see also p. 313 of [7])

(mm) = Q cos2 <p +T sin2 <p +(R +RT
) cos <p sin <p

(mo) = R cos2 <p - RT sin2 <p +(T - Q) cos <p sin <p

(nn) = T cos2 <p +Q sin2 <p - (R +RT) cos <p sin <p

or, in view of eqns (21),

(mm)=OTQ*O

It follows from eqos (33), (35), (22) and (23) that

D= (cos <p - p* sin <p)2 D= (cos <p +p sin <pr2 D.

Equations (32), (36) and (14) indicate that, using the same argument in deriving eqn (28a),

g=g

(34)

(35)

(36)

(37)

and hence gis an invariant.
If we eliminate O'i2 between eqns (1) and (6) and make use of eqns (30), we obtain a relation

between gand Ii which can be simplified after using eqns (29) and (24):

Ii = (RT +pT)g = h.

The last equality comes from eqns (37) and (l3b). Hence Ii is an invariant.
Before we go the the next section, we obtain from eqns (11a), (308) and (37) that

f*(m . x +p*o' x) = /(Z).

(38)

(39)

Since the r.h.s. is independent of <p, so is the I.h.s. Therefore, f*(m . x +p*o . x) is an invariant
with respect to <p. In other words, f*(m . x+p*o . x) is a constant for a fixed x.

5. TRANSFORMATION OF THE GENERAL SOLUTION

In [8J, the stress singularities at the vertex of a wedge or a composite wedge of anisotropic
materials were considered by assuming the form of fin eqns (11) in the following form:

(40)

where /( is a constant. The origin XI = X2 = 0 is the vertex. Since Z = XI + PX2 and there are three
pairs of complex conjugates for the eigenvalues, eqns (11) have the form:

(4Ia)

(41b)

where A .. B..... are constants which are in general complex and an overbar denotes a
complex conjugate. For simplicity only the terms associated with one pair of eigenvalues are
written explicitly to avoid introducing an additional SUbscript for the eigenvalues and Z. The
dots in eqns (41) denote terms associated with the remaining two pairs of eigenvalues. It follows
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from eqns (6) and (4tb) that the stresses CTij are given by
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(42a)

(42b)

For a single wedge, substitution of eqns (41a) and (42) into the boundary conditions results in
a system of linear algebraic equations for AI> BI> . .. , which may be written as

Ka=b (43)

where K is a square matrix which depends on K, a is a column matrix whose elements are AI>
B" . .. , and b is a column matrix which depends on the boundary conditions.

For a composite wedge, writing equations similar to eqns (41) and (42) for each material and
substituting the resulting equations in the boundary and interface conditions, one obtains a
system of linear equations in AI> BI> . .. , which again can be written in the form of eqn (43).

When the boundary and interface conditions are homogeneous, b == 0 and a nontrivial
solution for a exists if the determinant of K vanishes. This provides the constant K. If the real
part of K is positive, we see from eqns (42) that the stress is singular at the vertex.

The following questiont arises: Since the order of singularity is independent of the choice of
the reference coordinates, how does one see this from the formulation presented in eqns (40)
through (43)1

A similar question could be asked of other boundary value problems. We will therefore use
the general solution given by eqns (11) and consider the effects of change of reference
coordinates on the arbitrary function f(Z).

In the x'-coordinates, Z, Uj, Si and CTjj are rewritten as

z* = xT +p*x! = m' x+p*n' x

U~ = g'f*(Z*) +... )

S, = hU*(Z*) +...

df*(Z*)
CT'" = -p*h'" ""''-:-::::'--<-

II I dZ*

Using eqns (17) and (25), it can be shown that

Z* = ZI{ = (mo' x +PRo' x)/{

where

{ = cos l/J +p sin l/J = mo . m+PRo . m.

Equation (39) can be written as, using eqn (47),

f*(Z*) = f(Z) = f({Z*)

Hence

df*(Z*) df(Z) y

dZ* dZ!I'

tSee the Acknowledgements at the end of the paper.

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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Equations (45) and (46) reduce to, usingeqns (28), (49), (50), (25) and (11),

U, == Oit,gJ'(Z) =Oik'4: 1
s1 == OikhtJ(Z):= Oa:Sk

.... ( A..' A..) n 1. df(Z)
(T II := - Pcos 'I' - sm 'I' Uitflt dZ - ...

.... -(p . A.. A..)fl h df(Z)U,z- Stn'l'+COS'l' Uik k dZ + .••

Equations (52) can be rewritten as, using eqns (I6a) and (20)

(T11 = Oik(Ukl cos q, + (Tk2 sin q,»)

= OikOtqUkq

u1z =Oik( - Uk! sin q, + (Ttl cos q,)l
:= OitOZqUkq.

(5t)

(52)

(53a)

(53b)

As expected, Eqns (51) and (53) show that u and s transform as tensors of order one while O'ij

transform as tensors of order two.
The main results in this section are eqns (47)-(53). These equations enable one to see how a

solution in the Xi coordinates is related to the solution in the x1 coordinates.

6. DEGENERACY OFTHE EIGENVALUES

The analyses presented so far tacitly assume that the eigenvalues p's are distinct. When one
of p's is a double root, one mayor may not have two independent solutions for the
eigenvectors g and h, [7]. When there is only one independent solution for the eigenvector
associated with the double root eigenvalue, the general solution given by eqns (11) will not
provide six independent arbitrary functions. In[8] the second independent solution was derived
for the function feZ) given in the form of eqn (40). We will derive in this section the second
independent solution for arbitrary HZ). The case in which p is a triple root will also be
discussed.

When p is a double root, the first independent solution is given by the first term in eqns (II)
while the second independent solution is

d ~ df
Ui == dp {gJ(Z)} = d~ feZ) +gi dZ X2

d dhi dfs· =-{hJ(Z)}== -f(Z)+ h· -X2, dp dp 'dZ

where dg;/dp and dh;/dp are obtained by differentiating eqns (14) and (l3b):

D~+dD =0
dp dp g

db:= (RT + T)~+T.dp P dp g

(54a)

(54b)

(55)

(56)

We will not discuss here the existence of a solution for g and dg/dp from eqns (14) and (55)
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(see [8, II]). Using the relation,

X2 =(Z - t)/(P - p) =(Z - t)/(2~i),
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(57)

where /3 is the imaginary part of p, and deleting the term g,z d/(Z)/dZ and h,z d/(Z)/dZ which can
be absorbed in the first independent solution, one has

Uo =~ /(Z)_L d/(Z) t
'dp 2~i dZ

0= dhi /(Z) _ J!L d/(Z) Z-
S, dp 2~i dZ .

From eqn (6), the stresses obtained from Sj are

__ ( dhi _ - J!L) d[(Z) +E!!!. d2/~Z)t
O'iJ - P dp P 2~i dZ 2~i d

(58a)

(58b)

(59a)

(59b)

We can obtain a little simpler expression for O'i; if we choose, instead of eqn (58), the
following solution:

_(~..8L) ..8L df(Z) -"i - dp +2~i f(Z) - 2/3i dZ Z

o = (dhi +J!L) [(Z) _ J!L d[(Z) Z-
S, dp 2~i 2~i dZ .

We then have

= _ ( dh; +h
o

) d/(Z) +E!!!. d2t(Z) t
0"/1 p dp I dZ 2~i~

If p is a triple root, a third independent solution is

d2

UI =~ {gJ(Z)}

d2

Si =~ {hJ(Z}}.

(6Oa)

(60b)

(6Ia)

(6Ib)

(62a)

(62b)

We will not discuss this solution further since we have not seen an example other than isotropic
materials for which p is a triple root. For isotropic materials, the displacement II) is uncoupled
from ". and "2. Therefore, the eigenvalue p is a double root with respect to the plane
deformations with displacements "I and "2 and the solution, eqns (58) or (60), applies. For the anti
plane deformation which involves "3 alone, p is a single root [8].

7. PROPERTIES OF THE EIGENVALUES

The eigenvalue p, which is a root of the determinant of D defined in eqn (15), plays
important roles in the analyses of composite materials [12]. For isotropic materials, p = ± i is a
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triple root and is independent of the choice of reference coordinates. For anisotropic materials.
p depends on the choice of the reference coordinates. It was stated in[5] that, in the complex
p-plane. p encircles the point + i or - i twice as the angle t/J of Fig. I varies from 0 to 21t'. In
this section we will look at more closely the precise locus of p as q, varies from 0 to 2'/T.

We first write eqn (2.5) in the following form:

_ p(O) cos t/J - sin t/J
p(q,) - p(O) sin t/J +cos q,'

Let a and 13 be, respectively, the real and imaginary parts of p(t/J):

p(t/J) = a(t/J) + if3(t/J)

p(O) = a" + if30.

Equation (63) can be rewritten in the form:

. ao cos 2t/J +¥ao2 +1302
- I) sin 2t/J + if30

a(t/J) +1f3(t/J) = (ao sin t/J +cos q,)2 +(fJo sin t/Jf

(63)

(64)

(6.5)

(66)

It follows from eqn (66) that if p(O) = ± i. p(t/J) = ± i for a/l t/J. Also, if p is a multiple root at
t/J =0, it remains a multiple root for all t/J,(9). Next let

We see from eqn (66) that

2ao
tan2 t/JI = 1- (ah f3~r

1
q,1

a(q,) =0 when t/J = t/J, ± '/T/2
q,1 + '/T •

(67)

(68)

We therefore have the result that unless p(t/J) = ± i. there are four orientations of the coor­
dinates, each of them differs by an angle of '/T/2, for which p is purely imaginary.

We now denote by 8 the angle measured from t/J = t/JI and write eqn (63) as

or

where

_ +8 - p(t/J,) cos 8-sin 8
p(t/J) - P(t/JI ) - p(t/J.) sin 8+cos 8

a(t/J) + ifJ(t/J) = i<fJ~ - 1) sin2 ~ + i~1
cos2 6+ (13, SID 6)

(69)

(70)

(71)

Since all p's come in pairs of complex conjugate, we will consider the case fJo > O. Hence 13, > 0
by eqn (66). Moreover, since t/J. as defined by eqn (67) is not unique, one may choose q" such
that fJ. > 1. We win call fJJ and JlfJ. the principal values and t/JI and t/JI + '/T/2 the principal
directions.
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(72)

Then

p,=y+q, 1
131 =y- q.

The rcal and imaginary parts of eqn (70) can be written as

q sin2 8 I
a(cfl)::: y _ q cos2 8' fJ(cfl) = 1 - q cos2 8'

or

qfJ(q,) sin 28 = a(cfl) )

qfJ(cfl) cos 28 ::: 'YfJ(~)-l.

Elimination of ebetween the two equations yields the relation

or

(73)

(74)

(75)

(76a)

(76b)

where use has been made of eqns (72) and (73). This is the equation of a circle in which the
center of the circle is at p =1i and the radius is q, Fig. 2. The circle passes through the
principal values p ;:: fJ1i and i/(;h which correspond to the principal directions ~ -= ~I and
~I +Tr/2, respectively. In view of eqn (13) the circle intersects orthogonally at points t and t'
another. circle of unit radius with its center at the origin.

We see from eqn (74) that as ~ varies from 0 to 21l', p traces the circle, eqn (76), clockwise
twice. Another circle of the same size but symmetrically placed with respect to the a-axis on
the negative fJ plane is the locus of the complex conjugate of p. As ~ varies from 0 to 211', p
traces this circle counterclockwise twice. Since there are three pairs of complex conjugates for
p, we would have three circles each on the positive and negative fJ plane.

For the circles on the positive fJ plane, each circle as given by eqn (76b) is determined by
the value of fJl' It is clear that two circles with different P, never intersect. Therefore, if p's are
distinct at ~ =0, they remain distinct for all </I. The last statement remains valid even if two
circles happen to have the same /31 value.

We stated that each circle is determined by the value Pl' Since Ph 'Y and q are all related
through eqns (72) and (73), anyone of the three will determine the circle. In fact, 13 .. 'Y and q
are invariants of p. To find the form of the invariants, we solve 'Y from eqn (76a) to obtain

(77)

This relation is invariant to the rotation of the coordinates. The form for the invariant q is
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Fig. 2. Graphical solution of p(c/».

obtained from eqns (73) and (77). We have

(78)

As to fJ" we find from eqns (72), (77) and (78),

_ a2 +pl+ 1+«a2 +pl_l)2 +4a2)1/2
fJl - 2fJ . (79)

For isotropic materials, 'Y = fJl = 1and q =O. Thus instead of a circle we have a point located at
p = i.

It is clear from Fig. 2 that the absolute value of the real part of p can never exceed the value
q. To find the orientation at which the real part of preaches ± q, we use eqns (74):

qsin28 =+
1 - q cos2 8 - q. (80)

Making use of eqn (73) and solving for 8, one obtains

sin28 = ± 1/1. (81)

We therefore have the result that

(82)

These are points d and d' in Fig. 2.



Stress analyses of anisotropic elastic materials ISI

When the material is symmetric with respect to the (X2' Xl) plane or the the (XI> Xl) plane, the
sectie equation for p reduces to a cubic in p2. At least one of the p2 roots is real and the other
two may be real or complex conjugates. If they are complex conjugates, they can be written as,
after taking the square root,

p = ± ao+ i{Jo, ± ao- if3o. (83)

The first two roots have the same '" value according to eqn (77) and the two associated circles
coincide. Therefore, we have at most two circles instead of three on the upper and lower plane.

While the circle in Fig. 2 is the locus of p as I/J varies from 0 to 211', one could obtain
graphically the angle ~ associated with each point on the circle. To this end, we draw an ellipse
given by

(84)

The lengths of the major and minor axes of the ellipse are yq and q, respectively. Moreover,
the point p = i which is identified by c in Fig. 2 is one of the foci and the a-axis is the directrix.
The distance between the foci is 2q2. Hence the eccentricity e of the ellipse is

(85)

Comparing eqn (84) with (76a), we see that if we stretch the p-plane uniformly in the
{J-direction with the stretch ratio y while holding the a-axis fixed, the circle of eqn (761)
becomes the ellipse of eqn (84). Thus there is a one-to-one mapping between points on the
circle and points on the ellipse. For instance, points p(O), p(I/J), t and t' on the circle correspond
to points a, b, k and k', respectively, on the ellipse. To find the angle I/J between p(O) and p(I/J)
on the circle, we connect the corresponding points a and b on the ellipse to the point c. The
angle between ca and cb is 2I/J.

We first show that the angle between ca and the f3-axis is 2I/J,. Since the coordinates of
point a are (ao, ",{Jo), we see from Fig. 2 that

-ao
tan 2I/J1 =~l'

y~o-

(86)

This is identical to eqn (67) if '" of eqn (77) is used in eqn (86).
Next we show that the angle between cb and the f3-axis is 26. Noticing that the coordinates

of point bare (a(I/J), ",{J(t!>)), the length of the line cb is

by eqn (75). From Fig. 2, it is seen that

cb sinl 8 = a(I/J) I
cb cos2 8 = y{J(I/J)-1.

This is identical to eqn (75) in view of eqn (87).
It can be shown that t and t' in Fig. 2 are associated with I/J = I/J. ± 11'/4 and

P(I/JI ± 11'/4) = ± e+ i/y.

(87)

(88)

(89)

Therefore, the abcissa of point t provides the eccentricity e of the ellipse. Since 6 = 11'/4, the
lines connecting point c to the corresponding points k and k' on the ellipse are at the right angle
with the {J-axis. The line Ok is tangential to the ellipse at k, and meets point d if extended.



152 ,T. C. T. TlNG

Acknowledgements-The author is grateful to Prof. D. M. Barnett of Stanford University for the problem posed in Section
5 regarding the invariance of the order of stress singularity at the vertex of a wedge due to the rotation of the reference
coordinates. This gave the author impetus to investigate not only the problem posed by Prof. Barnett but also other
problems contained in the paper. The work reported here is supported by the Army Materials and Mechanks Research
Center. Watertown. Massachusetts, through contract DAAG 46-80-C-l108I.

REFERENCES
I. J. D. Eshelby, W. T. Read and W. Shockley, Anisotropic elasticity with applications to dislocation theory. Acta Metal.

1,251-259 (1953).
2. A. N. Stroh, Dislocations and cracks in anisotropic elasticity. Pllilos. Mag. 3,625-646 (1958).
3. A. N. Stroh, Steady state problems in anisotropic elasticity. 1. Mat•. I'IIys. 41. 77-103 (1962).
4. D. M. Barnett and L. A. Swanaer, The elastic energy of the straight dislocation in an infinite anisotropic elastic

medium. Phys. Status Solidi B 48.419-428 (1971).
5. D. M. Barnett and J. Lathe, Synthesis of the sextic and the integral formalism for dislocation, Greens functions and

surface waves in anisotropic elastic solids. Phys. Norv. 7, 13-19 (1973).
6. D. M. Barnett and J. Lathe, Line force loadings on anisotropic half-space and wedges. Phys. Norv. 8. 13-22 (1975).
7. P. Chadwick and G. D. Smith, Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl.

Mech. 17, 303-376 (1977).
8. T. C. T. Ting and S. C. Chou, Edge singularities in anisotropic composites. Int. J. Solids Structures. I?, 1057-1068 (1981).
9. S. G. Lekhnitskii. TIteory of Elasticity on an Anisotropic Elastic Body (translated by P. Fern). Holden-Day. San

Francisco (1963).
10. C. Truesdell and W. Noll, The non-linear field theories of mechanics. Handbuch der Physik, Vol. 111/3, Springer­

Verlag. New York (1965).
II. J. P. Dempsey and G. B. Sinclair. On the stress singularities in the plane elasticity of the composite wedge, J. Elasticity

9. 373-391 (1979).
12. T. C. T. Ting and S. C. Chou, Stress singularities in laminated composites. Proc. Sec. USA-USSR Symp. on Fracture

of Composite Materials. (In press).


